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ABSTRACT 
Predicting bearing degradation is crucial for precise maintenance. However, accurately predicting 
the degradation stages of bearings to achieve appropriate maintenance has always been challenging. 
To address this problem, we propose a network architecture based on automatic label assignment 
called FAEK and a multi-scale channel-attention classification (MCC) prediction model to predict 
the degradation stage of bearings at a given time. Our method achieved outstanding performance 
on the FEMTO dataset with an accuracy of 0.9665. This approach provides an efficient and reliable 
solution for the predictive maintenance of bearings.

Keywords: Automatic label assignment, bearing degradation prediction, classification prediction model, 
deep learning, predictive maintenance 

INTRODUCTION

Today, with the rapid development of technology and the continuous advancement of 
industrialisation, the reliability and performance of equipment and systems have become 
important focal points across various fields. Prognostics and health management (PHM) 
(Xia & Xi, 2019), an advanced technology and approach, offers an effective means for 
predicting equipment failure, optimising maintenance, and enhancing reliability through 

real-time monitoring, diagnostics, and 
prognostics of equipment health. 

PHM utilises operational data from 
equipment to predict health conditions and 
enable precision maintenance. Compared 
with traditional methods involving routine 
inspections and regular checkups, PHM 
provides an intelligent maintenance 
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approach. In conventional maintenance, determining the optimal timing for maintenance 
can be challenging; however, with PHM, the stage of the life cycle of the equipment can 
be predicted, enabling the implementation of appropriate maintenance strategies. This 
precise maintenance approach significantly enhances equipment maintenance's efficiency 
and cost-effectiveness while extending its operational lifespan. PHM technology offers 
equipment managers a more intelligent and efficient maintenance approach to managing 
large-scale equipment and complex operational requirements.

This paper focuses on bearing components, critical parts of many rotating devices. Their 
failure can result in equipment downtime and production interruptions, causing significant 
business losses. PHM technology can establish fault prediction models by collecting and 
analysing vibration data from bearings. Monitoring changes in the bearing's condition 
can predict its remaining lifespan. Currently, two main methods exist for predicting the 
remaining lifespan of bearings. First, the direct prediction method, which relies on machine 
learning models to directly predict a bearing's lifespan (Li et al., 2019; Wang et al., 2019; 
Ruan et al., 2023). By inputting feature data into the model, the model directly outputs the 
predicted value of the remaining lifespan. This approach requires selecting and extracting 
appropriate features and demands a high level of expertise in feature engineering. However, 
it cannot explain the bearing's degradation and failure mechanisms. Second, the health 
indicator method  predicts the time when the bearing reaches its failure threshold by 
monitoring its degradation process (Wang et al., 2021; Ren et al., 2018; Sanakkayala et al., 
2022). Subsequently, it calculates the remaining useful life. This approach requires the prior 
determination of suitable health indicators and thresholds, which relies on understanding 
the system's characteristics and degradation behaviour, making it challenging.

In the PHM of bearings, the regression problem of predicting the remaining life of 
a bearing is transformed into a classification problem. Rather than solely predicting the 
remaining life of the bearing, we are more interested in determining the current stage of the 
bearing’s lifecycle. It enables us to conduct more effective maintenance and management 
procedures. To achieve this, we can divide the entire lifespan of the bearing into different 
stages, and with the given bearing data, we can predict the current stage of the bearing 
life. It can aid in identifying appropriate maintenance strategies and operational measures, 
enabling us to implement suitable preventive maintenance or repair actions at different 
stages.

Based on this, this paper proposes a method for the early prediction of bearing 
degradation. This method combines a convolutional autoencoder segmentation network 
with a high-performance classifier to effectively differentiate and accurately classify 
bearing degradation processes. It provides more comprehensive and reliable support for 
the health assessment of bearings and maintenance decision-making. The contributions 
of this study are as follows:
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 • We propose a model based on convolutional autoencoders that can selectively 
distinguish different stages of bearing degradation. The network learns a low-
dimensional representation of the input data and uses reconstruction to segment the 
data into different stages of degradation. By utilising a convolutional autoencoder 
segmentation network, we can extract crucial features from bearing vibration data and 
employ them for subsequent classification tasks.

 • We propose a high-performance classifier for classifying and identifying the different 
stages of bearing degradation. To better adapt to the bearing degradation classification 
task, we extract both frequency and time-domain features based on the vibration data 
of the bearings used to train the classifier.

 • The classifier architecture is based on multi-branch parallel convolution and attention 
mechanisms, enabling it to capture long-distance dependencies within sequential data 
and learn the correlations between features. Consequently, our classifier achieves high 
accuracy in classifying the bearing degradation stages.

RELATED STUDIES

Existing research on bearing fault prediction has largely focused on predicting the remaining 
useful life (RUL). However, in PHM for bearings, we are more concerned with accurately 
determining a bearing's current life stage at a given time. Therefore, this section discusses 
research related to the segmentation of bearing degradation stages.

In the PHM domain of bearings, accurate segmentation of the bearing degradation stages 
is crucial for achieving precision maintenance and management. Unlike solely predicting 
the RUL, accurately segmenting the degradation stages of bearings enables appropriate 
maintenance strategies and actions to be identified, such as implementing preventive 
maintenance or corrective measures at different stages. Researchers have proposed various 
methods and techniques to precisely segment bearing degradation stages. Among them, 
approaches based on image segmentation, deep learning, and unsupervised learning have 
played a significant role in research on bearing degradation stage segmentation.

Methods based on image segmentation transform vibration data into an image format 
and utilise image segmentation algorithms, such as threshold segmentation and edge 
detection, to separate degraded regions from normal regions in the vibration images (Liao 
et al., 2022;  Wang et al., 2017). However, this approach can only achieve segmentation for 
two stages and may not accurately differentiate complex bearing degradation processes, 
such as the early stages of degradation. Deep learning-based methods using convolutional 
neural networks (CNNs) (Wang et al., 2021; Zhou et al., 2019) and RULNet (Gamanayake et 
al., 2023) have been used for feature learning and segmentation on vibration signals. These 
approaches can automatically learn feature representations and complex relationships, 
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enabling precise bearing degradation segmentation. Nonetheless, deep learning methods 
typically require a large amount of labelled data for supervised learning, which poses 
challenges in engineering applications. Manually annotating a large-scale vibration dataset 
is time-consuming and labour-intensive, demanding domain expertise and experience 
correctly labelling samples of different degradation stages.

Segmentation methods based on unsupervised learning enable the segmentation of 
bearing degradation stages without requiring labelled data. For instance, methods such as 
generative adversarial networks (Mylonas & Chatzi, 2020) and variational auto-encoders 
(Hong et al., 2014) can learn the latent representation and distribution of data, enabling the 
segmentation of bearing degradation and dividing degraded areas into different categories. 
In unsupervised learning approaches, the key lies in modelling bearing degradation. Based 
on the nature of the degradation process, bearing degradation modelling methods can be 
categorised into continuous degradation and discrete degradation stage models.

The continuous degradation model aims to establish a single model to describe the 
gradual deterioration of the bearing’s life. This model type is typically based on physical 
principles, statistics, or machine learning. The continuous degradation model considers the 
progressive changes in the bearing life and can capture the trends of bearing degradation 
based on various indicators (e.g. vibration features, temperature, and load). Common 
continuous degradation models include physical models (Cui & Su, 2021; Li et al., 2023), 
Markov processes models (Gu et al., 2023; Kou et al., 2022), and regression models (Chen et 
al., 2022). By estimating and predicting the parameters of a continuous degradation model, 
the model can forecast and assess the remaining life of a bearing. The establishment and 
prediction of the continuous degradation model are based on existing bearing degradation 
data and the assumption that the degradation process is continuous and gradual. However, 
the actual bearing degradation process may be influenced by multiple factors, such as 
working conditions, load variations, and environmental factors. These factors may result 
in discrepancies between the model and actual scenarios.

In the discrete degradation stage model, the bearing lifespan is divided into multiple 
discrete stages, based on which the bearing conditions are modelled and predicted. This 
model can adapt better to the nonlinearity and uncertainty of degradation processes in 
practical scenarios. Common discrete degradation stage models include hidden Markov 
models (Aggab et al., 2022) and time-series models (Cao et al., 2021; Zhu et al., 2023). 
These models can better describe and identify the different stages in the bearing degradation 
process, thereby assisting in determining appropriate maintenance strategies and operational 
measures.

The bearing discrete degradation stage model proposed by Juodelyte et al. (2022) 
transforms the life prediction into a classification problem. However, this model fails to 
identify effective features, resulting in lower accuracy in predicting early-stage bearing 
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degradation. In contrast, our proposed approach introduces a convolutional autoencoder. 
It combines it with a domain-knowledge-based automatic data labelling strategy and a 
classifier based on a multi-scale attention network architecture. This model is suitable for 
predicting degradation throughout a bearing’s lifespan.

METHODS

Bearing degradation can be categorised into four stages based on the observed physical 
manifestations and features in the frequency and time domains. This classification helps 
us better understand the changing trends and status evolution of bearing life. Each stage 
exhibits different degradation characteristics and requires specific maintenance strategies 
to prolong the lifespan of the bearing and ensure reliable equipment operation. Table 1 
summarises the characteristics and corresponding maintenance strategies for each stage.

Table 1 
Bearing degradation stage classification

Stage Physical 
Characteristics

Time-domain 
Characteristics

Frequency-domain 
Characteristics

Maintenance Strategy

Healthy The bearing is in 
normal operating 
condition.

It is manifested 
as stable periodic 
oscillations.

Normal operating 
frequency components 
are displayed in the 
spectrum.

Monitor and record 
the baseline condition 
and performance 
parameters of bearings.

Early 
degeneration

Minor signs of 
degradation, e.g. 
scratches, tiny 
cracks, or slight 
wear.

Minor non-
periodic 
variations may 
occur, e.g. slight 
changes in 
amplitude.

High-frequency 
components related 
to early-stage faults 
appear in the spectrum.

1. Monitor spectrum 
data and observe 
early signs of fault 
variations.

2. Perform regular 
vibration analysis 
and diagnosis.

3. Timely lubricate 
and clean.

Severe 
degeneration

More significant 
and severe 
degradation.

Manifests 
as evident 
non-periodic 
fluctuations, 
potentially 
accompanied by 
more amplitude 
variations and 
waveform 
distortion.

The spectrum has 
more high-frequency 
components and wide-
band noise associated 
with bearing faults.

1. Strengthen 
vibration 
analysis and fault 
diagnosis.

2. Implement 
appropriate 
maintenance 
and replacement 
measures.

3. Inspect lubrication 
conditions and the 
performance of 
lubricants.
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Stage Physical 
Characteristics

Time-domain 
Characteristics

Frequency-domain 
Characteristics

Maintenance Strategy

Failure Severe fault state Significant 
mutations, 
shocks, or 
irregular 
fluctuations may 
occur.

More high-frequency 
components and 
wide-band noise may 
appear in the spectrum, 
possibly causing 
impact frequencies.

1. Inspection and 
replacement of 
bearings and 
their related 
components.

2. Root cause 
analysis to prevent 
similar failures 
from occurring 
again.

This paper collects time-domain vibration data during the operation of bearings for 
bearing life-stage prediction. The problem is divided into two stages. Assuming the input is 
X∈Rk,t = (0,1,· · ·,T ), where T is the time step. X contains the complete life cycle data of 
the bearings. The data transformed into the frequency domain is represented as F(X)∈Rm, 
where m is the dimension of frequency domain features. The model maps the frequency 
domain features to bearing life-stage labels L∈{0,1,2,3} to form life labels, reflecting 
different degradation states of the bearings. Equation 1 represents Stage I:

L = M(F(X)) [1]

M represents the model function for Stage I.

Assuming the input data are X∈Rk,   and L∈{0,1,2,3}, representing different life-stage 
labels of the bearings, the model takes input data X, which include the frequency and time 
domain features of the bearings, along with life-stage labels L. The output is the predicted 
life-stage label of the bearings, denoted as P∈{0,1,2,3}. Equation 2 represents Stage II:

P = G(X,L) [2]

G represents the classifier for Stage II.

The functions M in Stage I and G in Stage II can be used to classify and predict the 
degradation stage of the bearing vibration data. This aids in determining the bearing life 
stage at a given time point and provides corresponding maintenance strategies. Figure 1 
shows the workflow of our model, which is divided into two parts based on the description 
of the aforementioned problem. In the following, we discuss each submodel in detail.

Table 1 (continue)
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Figure 1. Bearing life-stage workflow

Bearing Degradation Model

The proposed bearing degradation model, FAEK, consists of data pre-processing, a 
convolutional autoencoder, and a clustering operation. The architecture of the FAEK 
network is shown in Figure 2.

Figure 2. FAEK network architecture
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First, the bearing vibration data are subjected to a fast Fourier transform (FFT) to 
determine the vibration signal’s dominant frequency components and energy distribution, 
thereby extracting features related to bearing degradation. These features can be used to 
divide the degradation stages. Assuming that the bearing vibration data are represented as 
a time series x(t), where t represents the time, the frequency-domain transformation can 
be expressed as Equation 3:

𝑋𝑋(𝑓𝑓)  =  𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥(𝑡𝑡)))                                      [3]

𝑋𝑋(𝑓𝑓)  =  𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥(𝑡𝑡)))                                      is the frequency-domain representation of the vibration data, f denotes the 
frequency, and ABS is the absolute value.

The frequency-domain signals of the bearings are fed into the convolutional 
autoencoder to learn the feature representation of the data through unsupervised learning. 
The convolutional autoencoder consists of an encoder and a decoder. The encoder 
compresses the input data into a latent representation, and the decoder decodes the latent 
representation into the reconstructed input data. In contrast to traditional fully connected 
autoencoders, convolutional autoencoders utilise convolutional operations in the encoding 
and decoding processes. In the bearing degradation model, the encoder uses 32, 64, and 
128 convolutional kernels to sample the pattern information thrice. Then, it samples 64, 
32, and 1 convolutional kernel in the decoder to recover the data thrice. The convolution 
kernel size for both the encoder and decoder is 3.

The encoder takes the input data  and processes them through convolution and 
activation operations. It gradually reduces the size of the feature maps through max-
pooling operations and extracts and compresses feature information from the input data. 
The results of the convolutional and pooling layers are denoted as h and p, respectively, 
in Equations 4 and 5:

ℎ =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑊𝑊, 𝑏𝑏)(𝑥𝑥))                                    [4] 

𝑝𝑝 =  𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 represents a one-dimensional convolution operation; 𝑊𝑊 and 𝑏𝑏 are  

 [4]ℎ =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑊𝑊, 𝑏𝑏)(𝑥𝑥))                                    [4] 

𝑝𝑝 =  𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 represents a one-dimensional convolution operation; 𝑊𝑊 and 𝑏𝑏 are  

 [5]

ℎ =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑊𝑊, 𝑏𝑏)(𝑥𝑥))                                    [4] 

𝑝𝑝 =  𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 represents a one-dimensional convolution operation; 𝑊𝑊 and 𝑏𝑏 are  

 represents a one-dimensional convolution operation; W and b are the 
weights and bias parameters corresponding to the convolutional layer; ℎ =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑊𝑊, 𝑏𝑏)(𝑥𝑥))                                    [4] 

𝑝𝑝 =  𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 represents a one-dimensional convolution operation; 𝑊𝑊 and 𝑏𝑏 are  

 represents the 
activation function; 

ℎ =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑊𝑊, 𝑏𝑏)(𝑥𝑥))                                    [4] 

𝑝𝑝 =  𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 represents a one-dimensional convolution operation; 𝑊𝑊 and 𝑏𝑏 are  

 represents a one-dimensional max-pooling operation.
The decoder gradually restores the size of the feature maps through upsampling 

operations, followed by convolution and activation operations, to obtain the reconstructed 
output. 𝑢𝑢 =  𝑅𝑅𝑝𝑝𝐴𝐴𝑀𝑀𝑈𝑈𝑝𝑝𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)  can be represented as u in Equation 6:

𝑢𝑢 =  𝑅𝑅𝑝𝑝𝐴𝐴𝑀𝑀𝑈𝑈𝑝𝑝𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)  [6]

𝑢𝑢 =  𝑅𝑅𝑝𝑝𝐴𝐴𝑀𝑀𝑈𝑈𝑝𝑝𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀1𝐷𝐷(ℎ)  represents the one-dimensional up-sampling operation.
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Using a convolutional autoencoder, we can capture meaningful features from bearing 
vibration data and transform them into a meaningful representation. The convolutional 
autoencoder is trained in an unsupervised learning manner, eliminating the necessity for 
manual labelling of the bearing data’s life stages and avoiding reliance on handcrafted 
feature engineering. The design of the convolutional autoencoder enables it to perform 
exceptionally well in processing the time-series data of bearing vibrations, enabling it to 
extract temporal correlations and local features from the data.

Finally, by mapping the learned features into a clustering space, the bearing data can be 
effectively grouped into different degradation stages, generating the corresponding labels. 
It provides essential guidance for subsequent maintenance decisions. This data-driven 
approach exhibits a good generalisation performance and can adapt to various types and 
scales of bearing data, making it a viable solution for practical engineering applications.

Prediction Model

Early signs of bearing degradation are only visible in the frequency domain (Qiu et al., 
2023). We propose a multi-input classification network architecture, which we refer to 
as the multi-scale channel-attention classification (MCC) model, to capture both the 
frequency-domain features associated with early degradation signs and time-domain 
features that intensify with the progression of degradation. Figure 3 shows a schematic 
of this architecture.

In this architecture, we simultaneously input the time domain, frequency domain, and 
degradation signals. Time-domain signals provide more detailed temporal information, 
whereas frequency-domain signals can better capture the frequency characteristics. By 
combining these two inputs, we can fully exploit their complementarities. The network has 
three layers: multi-scale processing, channel attention, and classification. The substructures 
are discussed in detail in the following.

The multi-scale processing layer consists of a multi-branch parallel convolution, 
utilising four parallel convolutional branches to extract different frequency domain features. 
Each branch extracts a set of feature maps, capturing distinctive aspects of the input data. 
These feature maps are then fused to obtain a more comprehensive representation of the 
features. This approach provides a richer and more diverse feature representation, enabling 
the network to adapt to various bearing degradation patterns and enhance its ability to 
extract complex features.

If the input data are denoted as X, the number of convolution kernels is N, the size of 
each convolution kernel is K × K, the number of input data channels is C, and the number 
of output feature maps is M. The weight matrix of each convolution kernel I (1 ≤ i ≤N) 
is represented as Wn with the shape K × K × C , and its bias term is bn. The output of the 
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multi-path convolution operation for the m-th feature map of the input data X can be 
calculated using Equation 7:

Ym = �  
n

f(conv(Wn , X) + bn )  [7]

Here, conv(Wn, X) denotes the convolution operation of input data X with convolution 
kernel Wn , bn denotes the bias term of the n-th convolution kernel, and f denotes the ReLU 
function.

During the bearing degradation process, the frequency spectrum characteristics of the 
vibration signal change. Traditional single convolutional kernels often struggle to capture 
subtle variations across frequency bands. By contrast, multiple parallel convolutions, known 
as multi-branch parallel convolutions, employ several parallel convolutional kernels, each 
corresponding to a different frequency band. It enables better extraction of signal features 
in the frequency domain. Moreover, multi-branch parallel convolution increases the depth 
and width of the network, providing more parameters and nonlinear expressive power. 
Consequently, the model can better adapt to complex vibration signal features, improving 
its bearing degradation research performance.

Figure 3. MCC architecture
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Channel Attention Layer

The channel attention network won the championship in the ImageNet classification task 
in 2017 (Hu et al., 2019). It can enhance the attention mechanism of CNNs by adapting 
the importance of features across channels to improve network performance.

The channel attention module comprises two key steps: squeezing and excitation. 
In the squeezing step, the input feature map undergoes global pooling along the channel 
dimensions to obtain global information regarding each channel. In the excitation step, 
a nonlinear function is learned to transform the squeezed features into channel attention 
weights that adjust each channel’s importance in the input feature map. Figure 4 shows 
the structure of the channel attention module.

Figure 4. Channel attention module (Hu et al., 2019)

Squeezing: If the input feature map has dimensions H, W, and C, the compression 
operation applies global average pooling to the input feature map, resulting in a 
C-dimensional vector that represents the global average value for each channel. This vector 
indicates the overall importance of each channel in the input-feature map. The output result 
Z can be represented as Equation 8:

Z = Fsq (X) =
1

H × W
�  

H

i=1

�  
W

j=1

X(i, j)  [8]

Excitation: The excitation operation generates channel attention weights by learning a 
nonlinear mapping function. The mapping function can be learned using a fully connected 
or one-dimensional convolutional layer. Given an input feature vector Z, the result of the 
excitation operation, denoted as S, can be represented as Equation 9:

S = σ(W2 ∗ δ(W1 ∗ Z))        [9]

S is a C-dimensional vector, representing the attention weights for each channel, W1 
and W2 are weight matrices,  denotes the ReLU activation function, and  represents the 
sigmoid function.
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Scale: The channels of X are reweighted by performing element-wise multiplication 
between S and X. Thus, the weighted feature map Y is calculated as Equation 10:

Y = Fscale(S, X) = S ∗ X       [10]

By learning the weights of each channel, the channel attention network can adaptively 
enhance important features. The vibration frequency-domain signals of the bearings can be 
used to extract the most representative and discriminative frequency-domain features, which 
is beneficial for accurately analysing the degradation of bearings. Moreover, the channel 
attention network can significantly improve the network performance without introducing 
additional parameters. It is particularly important for large-scale data processing in bearing 
degradation research because bearing vibration signals are typically high-dimensional time-
series data. The network can efficiently and accurately extract features without increasing 
the network complexity.

Classification Layer

In bearing fault diagnosis, the time-domain features are crucial for capturing fault 
conditions. Skewness and kurtosis are commonly used time-domain features that reflect 
vibration signals’ symmetry and impulsive characteristics. These features are essential for 
predicting the degradation of bearings. When the bearings are faulty, the pulse components 
in the vibration signal typically increase, making these features valuable for bearing fault 
diagnosis. Additionally, dimensionless parameters can mitigate the influence of operating 
conditions and other factors on the model. Common dimensionless parameters include the 
clearance, waveform, impulse, peak, and kurtosis indices. The clearance index is often 
used to indicate wear conditions. In contrast, the peak, impulsion, and kurtosis indices are 
used to describe the impact characteristics of the signal, aiding in better characterising 
early degradation. Table 2 presents the 13 time-domain features that we extracted (Zhu 
et al., 2014).

To identify bearing degradation more accurately, the feature dimensions of the vibration 
signal were reduced after performing feature extraction with the aforementioned two-layer 
structure. By combining frequency-domain and time-domain features and then applying 
linear layers and softmax for degradation-stage prediction, this fusion approach enables 
comprehensive utilisation of information from both feature categories, thereby enhancing 
diagnostic and predictive accuracy. Thus, to predict the bearing stage model, the convolution 
operation of the input layer uses 32 convolution kernels for sampling, all with a size of 3 
and an activation function of ReLU.
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RESULTS AND DISCUSSION

We used a publicly available bearing dataset to validate the proposed model’s performance. 
We evaluated automatic label assignment and compared the classification results for 
different bearings under various operating conditions. Additionally, we assessed the 
accuracy of predicting the bearings’ degradation stages and made comparisons to 
demonstrate the effectiveness of our model in predicting bearing degradation. We aimed to 
understand the effectiveness of the model in generalising across different types of bearings 
and operating conditions.

Datasets Description 

This study employed the FEMTO-ST bearing dataset for training and evaluation (Zhang et 
al., 2018). This dataset contains horizontal and vertical vibration measurement data of ball 
bearings with rolling elements collected through experiments. The bearings were tested 
under pressure exceeding the recommended load to accelerate the degradation process. As 
shown in Table 3, 17 bearings were tested under three different load and speed conditions. 
For safety reasons, the experiment stops when the accelerometer reading exceeds 20g, 
indicating that the bearing has reached the final degradation stage. Due to the high variability 
of bearing life (from 28 minutes to 7 hours), the FEMTO bearing dataset is challenging 
(Figure 5). There is no specific explanation for the bearing malfunction. Even worse, the 
data challenge description mentions that bearings may have multiple defects occurring 
simultaneously. During the experiment, the vibration data of the bearing was sampled 
every 10 seconds at a frequency of 25600Hz for 0.1 seconds. As a result, each sample 
contained 2560 × 2 data points.

Table 3  
FEMTO-ST dataset (Zhang et al., 2018)

Working 
conditions

Load force (N) Speed (r/min) No. of training 
sets

No. of test sets

1 4000 1800 2 5
2 4200 1650 2 5
3 5000 1500 2 1

Data Preparation and Experimentation

First, we pre-processed raw data from the FEMTO-ST dataset. We independently separated 
and processed the data for each direction because the dataset contains vibration signals 
for horizontal and vertical directions. We applied an FFT to convert the vibration signal 
in each direction into the frequency domain and extract the frequency-domain features. 
Additionally, we extracted the time-domain features for each direction’s vibration signal 
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based on the feature list provided in Table 2, described their statistical and impulsive 
characteristics, and then fused the features from horizontal and vertical directions to obtain 
comprehensive and integrated bearing features. Because each bearing may have different 
operating conditions and degradation patterns, we performed all the above operations 
separately to capture its unique vibration characteristics and degradation patterns.

We used cross-entropy as the loss function and the Adam optimiser to train the model. 
During the iterations, we employed gradient clipping techniques to prevent gradient 
explosions. The batch size for all the networks was 64, and the learning rate was 0.01. 
All the experiments were conducted on a Windows 10 operating system with an Intel i5-
12490F CPU and an NVIDIA RTX 3060 12 GB GPU. Our code was written in Python 
3.8 using PyTorch.

To evaluate the effectiveness of the automatic label assignment of the model, we 
compared automatically generated stage labels with manually assigned stages from for the 
training set (Sutrisno et al., 2012). Smaller differences indicated better accuracy in the model 
label assignment. Additionally, to assess the performance of the bearing stage prediction 
classifier, we compared the predicted stages with the stages automatically labelled by 
our model for the test set to evaluate the prediction accuracy. As bearing PHM requires 
predictions to follow the actual degradation sequence over time, we also considered the 
overlap between predicted and actual stages when predictions were made in chronological 
order, which aided in gauging the model’s reliability.

Experimental Results

Data labelling: We automatically assigned degradation stages to the six bearings in the 
training set and compared the results with those of the manually labelled stages. As shown 
in Figure 5, the model’s automatically assigned bearing degradation stages were in good 
agreement with the manually labelled stages, indicating that the model performed well in 
identifying the bearing degradation stages. Although some overlap was observed between 
adjacent stages, this was reasonable because of the continuity of the degradation process 
and variations in the signals, which may have resulted in some degree of overlap between 
neighbouring degradation stages. The model demonstrated excellent performance in 
distinguishing between healthy and faulty stages, which is crucial for early maintenance 
and timely identification of failed bearings. The FEMTO-ST dataset was collected under 
extreme operating conditions, resulting in relatively short healthy stages for all bearings, 
which aligned with real-world scenarios.

However, for bearing1_2, the model’s performance was relatively poor. This was owing 
to the excessive amplitude of the smoothest maximum acceleration in the vertical direction, 
which resulted in strong interference in the signal. Despite this, the model exhibited good 
accuracy and robustness in automatically assigning bearing degradation stages.
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Figure 5. The training set degradation labels: Top: Smoothed maximum acceleration obtained by averaging 
the five highest absolute acceleration measurements in the time domain (Sutrisno et al., 2012). Bottom: 
Automatically assigned labels obtained using the FAEK model. The vertical lines represent the manually 
assigned results
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Classifier

After automatically labelling the training set for the six bearings using the FAEK model, 
we compared the performances of the AE model (Juodelyte et al., 2022), 1DCNN model 
(Wang et al., 2021), and our proposed MCC model in predicting the bearing degradation 
stages (Figure 6). 

Figure 6. Accuracy of different classification models

The results indicated that the MCC model outperformed the other two with 
remarkable classification accuracy for the bearing degradation classification task, reaching 
approximately 0.9665. The superiority of the MCC model can be attributed to its innovative 
design and feature extraction techniques. The model adopts multi-path convolution 
and attention mechanisms to effectively extract meaningful features. Additionally, we 
simultaneously trained the model on both the horizontal and vertical data of the bearings 
and ultimately fused the frequency- and time-domain features.

The AE and 1DCNN models exhibited similar performances, with maximum accuracies 
of 0.8471 and 0.8763, respectively. Notably, our proposed MCC model achieved an 
accuracy greater than 0.9 after only 30 epochs, indicating its high convergence speed. 
This efficiency makes the MCC model more effective in solving the bearing degradation 
classification task, thereby providing timely and accurate solutions for bearing fault 
diagnosis and prediction.

To validate the accuracy of our model in predicting the bearing degradation stages 
further, we compared the results of the MCC and 1DCNN models on the test set (Figure 
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7). The left-hand figure shows the prediction accuracy of the 1DCNN model. The box 
plot reveals that the 1DCNN model had a lower classification accuracy in stages 1 and 3, 
with the median line of the boxes being relatively low and the boxes narrow, indicating a 
significant dispersion of data in these two stages. In particular, the performance was poor in 
bearing degradation stage 1. The right-hand figure in Figure 7 shows the results of our MCC 
model, indicating a high classification accuracy at all stages. The median line of the boxes 
was higher, and the boxes were flatter, suggesting a higher concentration of data at each 
stage. Therefore, the MCC model exhibited more stable performance and superior results.

Figure 7. Test set accuracy of the models (based on FAEK labels). Left: 1DCNN model. Right: MCC model

Figure 8 shows the statistics on the overlapping rates between the adjacent stages of 
all 11 bearings in the test set. Our model’s predicted results had a low overlapping rate, 
indicating the MCC model’s ability to distinguish different degradation stages and better 
identify the distinctive features of each stage in the bearing degradation classification task.

Figure 8. Overlap rate of adjacent stages for the models. Left: 1DCNN Model. Right: MCC Model

We presented the prediction results using a smoothing classifier to reduce prediction 
fluctuations at individual time points and obtain more stable predictions. Specifically, we 
generated the posterior probabilities for five predictions for each time point in the test set. 
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We calculated their average within a fixed sliding window, resulting in smooth classifier 
predictions.

Figure 9 shows the prediction results for three different operating conditions for the 
test set containing 11 bearings. The graphs show that the predicted bearing degradation 
stages aligned well with the actual bearing degradation progress over time, indicating that 
our predictions were highly accurate and consistent with the actual degradation processes 
of the bearings.

Figure 9. Prediction results for bearings 1_5 (top), 2_4 (middle), and 3_3 (bottom)

CONCLUSION

This study focused on the problem of predictive maintenance for bearings, aiming to classify 
bearings into four degradation stages to predict at a given time point when the bearing is 
in the degradation stage and to provide corresponding maintenance strategies for different 
stages. We propose a method based on a FAEK automatic label assignment and an MCC 
prediction model to achieve this. This model has the following characteristics: (1) automatic 
label assignment: We use a convolutional autoencoder-based approach to segment the 
full-lifetime vibration signals of bearings into different stages. The FAEK automatic label 
assignment effectively distinguishes different degradation stages of bearings, avoiding 
the laborious and subjective nature of manual label assignment, and (2) prediction model: 
We input both time- and frequency-domain features of bearing signals into the MCC 
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classification model, which includes multiple convolutional modules and channel attention 
modules. These modules aid in better extracting signal features and achieving a precise 
prediction of the bearing degradation stages. With this prediction model, we can accurately 
predict the degradation status of bearings and promptly perform corresponding maintenance 
measures. We validated this network architecture using the FEMTO dataset. The results 
revealed excellent performance. The automatically assigned labels highly overlapped with 
the manually assigned labels, successfully distinguishing different degradation stages. 
For degradation-stage prediction, our model architecture achieved an accuracy of 0.9665.

The bearing dataset used in this study is relatively clean, whereas in practical industrial 
applications, bearing data may be subject to various types of interference and noise. 
Additionally, the accuracy of the automatically assigned labels requires further discussion 
and improvement. Future research should explore better segmentation methods to improve 
the quality of labels. Only by improving the quality of the labels can our classification 
prediction results become more trustworthy and reliable, thereby providing more effective 
support for the predictive maintenance of bearings.
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